
Introduction to Cascading Style Sheets (CSS)CSS
Cascading StyleSheets

 Introduction to Cascading Style Sheets (CSS)
This document points out major features of the CSS system at a very high level and, is designed to
be used in conjunction with parallel discussions and demonstrations. CSS is a rule based language
designed to be called from an HTML, XHTML, or XML document to supply additional typo-
graphic styling events. Note that CSS is not an XML application but can be called from XML
applications. At its most abstract level, I could describe CSS as: a declarative, rule based pattern
language. (I would like to point out that this is also a good way to describe XSLT)

The file that contains CSS rules/instructions is called a “stylesheet” for the straight-ahead reason
that if the browser follows these rules, then the affected document will be typographically altered
from the browser’s defaults, that is, styled. The connection between a CSS stylesheet and a host
HTML document (or an XHTML or XML document) is the presence of a call-out in the host ref-
erencing that CSS file.

The most compelling reason for stylesheets is that they encapsulate or hide presentation code or
instructions from content. Further, the CSS stylesheets allow an author to do more than either
HTML or XHTML can do natively, again due to the separation that allows additional processing.

Just What is a Stylesheet?
A style sheet is a declarative set of rules that are read by a rendering engine (such as browser soft-
ware) in order to transform a source document (internally represented as a "tree" model) into a
presentation document (internally represented as a "tree" model) that can be displayed to a user,
usually visually, but aural style sheets are also supported by some experimental browsers. Here is
a first quick look at a CSS stylesheet assumed to be in a file named mystyle.css. More detail fol-
lows later in this document. (a reference to this file would be called out within an HTML docu-
ment by an author who wished the browser to honor those typographic requirements. The actual
linkage code appearing in the HTML document would look like:

<link href=”mystyle.css” type=”text/css” rel=”stylesheet” />

).

 Example CSS-1
/* mystyle.css (This is a comment line in a CSS file) */
h1 { font-family:Arial; font-size:16pt; }
h2 {font-family:Arial; font-size:14pt; }
p { font-family: "Times New Roman"; font-size:1em; }

The example above first displays a comment line, bracketed by "/*" and "*/", as is used in C,
C++, and Java. Then three rules follow that will apply to those particular tags in any associated
(X)HTML document. The body of the rule is bracketed by "{" and "}" symbols, called “braces”.
The text preceding the body is called the "selector". The first rule, with a selector of "h1", means
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 1

Keeping Content and Presentation Separate with CSSCSS
that the content between the starting <h1> tag and the ending </h1> tags in the (X)HTML docu-
ment, requests that the browser use Arial type face (if available, otherwise the closest available
font, such as Helvetica). Arial is the common sans-serif font used on Windows platforms while
Helvetica is common on a Mac. Additionally, the text is to be set in "16pt" size. (These are "print-
ers points", at 72 points per inch)

Similarly, the second rule says that the content between the <h2> and </h2> tags in an associated
(X)HTML document is to use the Arial font with a smaller point size of "14pt".

The last rule, with a selector of "p", says that the content between <p> and </p> tags should use
the "Times New Roman" font with a font size that sets a size relative to the browser's default size.
The use of relative measures is encouraged since these settings will scale according to the user's
preferences and actions.

 Keeping Content and Presentation Separate with CSS
At the same time W3C was standardizing HTML, some help in keeping content separate from
presentation was offered in the form of another W3C complementary presentation language called
Cascading Style Sheets (CSS). This language, introduced in 1994, was specifically designed to
help "style" or present HTML pages. Now, a designer could declare the style of an HTML head-
ing, for example, in a separate CSS document, called a style sheet. The style for a particular head-
ing, for example, is declared in the form of a rule, that specifies all the presentation typographic
events that are to be applied to all the matching headings in the HTML document. For example,
the rule might specify that all h1 first level headings in the HTML document should be set in the
font family "Arial", bold, with a text point size of 16 points. (Note: The HTML file and the CSS
style sheet are connected by a tag in the HTML file that specifies the name of the CSS style sheet
to be accessed). In this "heading" case, the browser would read the HTML file and when it came
to a h1 first level heading, it would read the associated CSS style sheet and selectively override its
own default settings for h1 first level headings. The general result is that presentation details (kept
in the CSS document) are separate from the content (kept in the HTML document).

Multiple Targets, Same Source Document
Another reason for the value of keeping the presentation separate from the content is the need to
often present the same content on different client target devices or in different ways on the same
device. In this case, it is the presentation that needs to be varied, and that is just what CSS is
designed to do. (If the structure of the content is to be transformed, there is another language
called XSLT, that can be run prior to the final styling by CSS). This need for some kind of trans-
formation followed by presentation, occurs frequently when a user wishes to receive information
in a way that matches their needs or constraints, such as a visually impaired reader or a user
receiving information over a very limited cellphone. In both cases, the content may be the same
(or abbreviated/transformed), but the presentation modes will be very different. Having the con-
tent in a separate document then allows that content to remain the same while several different
style sheets could be applied to that same document thus rendering different presentations for dif-
ferent audiences or devices.
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 2

Origins and EvolutionCSS
 Origins and Evolution
An ancient origin of stylesheets is simply handwritten (or spoken) instructions accompanying a
manuscript, telling a scribe how it is to be written (or chiseled). Later, the instructions told a
printer how a manuscript was to be typeset. In more modern times, this set of instructions is called
a "template" in Windows products or "formats" in other products, or simply "stylesheets", and
directs a computer or a laser printer how a document is to be rendered.

Examples: DTP (Desktop Publishing), Word Processors (WP), Web Styling

Desk Top Publishing has always used stylesheets in order to transparently and immediately render
text in a What You See is What You Get (WISYWIG). Framemaker from Adobe, is an example
DTP package that has built in style sheets that may be overridden by the document author. Simi-
larly, word processors like Microsoft Word and others behave in analogous ways.

Browser Implementations
The browser manufacturers have not kept up very well with the evolving CSS specs. The current
crop of browsers, IE 6.0 and Netscape 7.2, still don't implement all of the CSS2 specification that
was finalized in 1998! So, the best an author can do is to use the CSS1 specification, which the
current browsers do support, and test out which of the CSS2 features are mutually supported.

CSS1, CSS2, CSS3, Mobile CSS

The CSS specification is now at level CSS3, after beginning at CSS1 in 1996. Much has changed
of course, and many new devices have caused a re-thinking of how specs are to be developed and
issued. Currently, one of the most important approaches to spec development is to construct and
issue them in a modular fashion. So, instead of one monolithic, complete spec, we are now seeing
specifications for XHTML, CSS, and SVG for that matter, being issued in phases, and in modules
that describe some coherent set of functionality. The new CSS3 spec is now completely modular
as described by the W3C Introduction to CSS Working Draft of May 23, 2001. There is a section
in there titled "Why Modules" that states:

As the popularity of CSS grows, so does the interest in making additions to the specifica-
tions. Rather than attempting to shove dozens of updates into a single monolithic specifi-
cation, it will be much easier and more efficient to be able to update individual pieces of
the specifications. Modules will enable CSS to be updated in a more timely and precise
fashion, thus allowing for a more flexible and timely evolution of the specification as a
whole.

For resource constrained devices, it may be impractical to support all of CSS. For exam-
ple, an aural browser may be concerned only with aural styles, whereas a visual browser
may care nothing for aural styles. In such cases, a user agent may implement a subset of
CSS. Subsets of CSS are limited to combining selected CSS modules, and once a module
has been chosen, all of its features must be supported.

Mobile CSS
As an example of this modularization, CSS now has a module called Mobile CSS that specifies a
minimal set of properties, roughly comparable to the original CSS1 spec. In fact, it is this specifi-
cation that forms the basis for this course's CSS property set.
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 3

Origins and EvolutionCSS
Rule Structure
CSS is a Declarative Pattern Language
The basic elements of the CSS language are its Rules. A rule is composed of components as fol-
lows:

The **** diagram shows the CSS rule structure ***. First off, the whole structure is called a Rule.
The Rule then decomposes into a Selector and a Declaration Block. The Declaration Block in turn
is composed of a list of declarations. Within each of those declarations there is a property sepa-
rated by a colon from its value. That value, in turn can be a list too. For example, in the figure, I
show a Selector that will select all the em (that is, the "emphasis") elements . in the docu-
ment.

Once the selector matches an em element, it then applies a color property value of "red" to the text
and also makes the text "italic".

Selectors
Selectors allow you to specify which elements you would like to apply styling to. The following
types of selectors will be considered:
• Type Selector - this selects elements in the document according to type. For example:

h1 { color:silver; } . This matches any element h1, that is, a first level head, and
makes its text "silver".

• Group Selector - this select a group of elements and applies the same declarations to all of
them. For example:

h1,h2,h3,h4 { font-family:Arial; } applies the same font "Arial", to all of the listed
head elements.

• Descendent Selector - (Note: this was called a contextual selector in CSS1) this selects ele-
ments that are descendents of another element within the document tree. For example:

p em {color:red; } selects em elements from the document and makes their text con-
tent red, if any ancestor is a p. Note that the p element can not only be a parent element,
but could be a grandparent, great great grandparent and so on. Just so long as the em ele-
ment can trace up through the document tree and find a p.

As another example, you might have:
p.warning em {color:green; } This specifies that if there is a paragraph in the HTML
document that is specially marked as a "warning" paragraph (this would mean that it was
marked as:
<p class="warning" > This is a warning paragraph text with subtext that

 turns green and on and on. </p> , then if there is an tag nested
within it, it's text will turn green!

• Universal Selector - this will select any element. For example:

* {color:purple; } will cause all text in the document to be purple, unless overridden.
• Child Selector - this will select any element with a specific parent For example:
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 4

Origins and EvolutionCSS
p > strong {color:green; } will cause a strong element to color its text green only if
it is an immediate child of a p element, with no intervening tag.

• Adjacent Sibling Selector - this will select any element that follows a specific element in the
marked up document. For example:

p + cite {color:yellow; } will cause a cite element to color its text yellow only if it
immediately follows a p element (at the same level). This means there is no other element
between the cite and the p element.

• Class Selector - The class selector is used to assign properties to a named class. For example:
In the stylesheet we could specify that "specially" marked paragraphs would have the follow-
ing properties and values. Here the specially marked feature is indicated by the ".warning" suf-
fix on the paragraph selector. So, any paragraph element marked as a "warning" paragraph will
have its text colored red and made italic. (We have seen an example of this earlier). Similarly, I
could specify that a head tag marked as warning would also need to be set as red italic text. The
stylesheet code would look like this:

p.warning { color:red; font-style:italic; }
h1.warning { color:red; font-style:italic; }
or more compactly,
p.warning, h1.warning {color:red; font-style:italic; }
or really compact!
*.warning {color:red; font-style:italic; }

Within the HTML document, we mark such paragraphs by inserting the attribute "class"
with value = "warning" inside the paragraph start tag as shown below:
. . . <!-- previous HTML code -->
<p class="warning" > Do NOT drop this carton!
</p>
. . . <!-- additional HTML code -->
<h1 class="warning" > Safety Instructions </p>
. . . <!-- additional HTML code -->

• ID Selector - This type of selector is used to assign properties to an element with a specific and
unique identifier. As contrasted with the "Class" selector above, that could apply to multiple
elements, the ID selector can apply to only one. For example:
In the stylesheet we could specify a uniquely marked paragraph that would have the following
properties and values. Here the specially marked feature is indicated by the "#unique123" suf-
fix on the paragraph selector. So, a paragraph in the HTML document marked as a "unique123"
paragraph will have its text colored red and made italic. A paragraph marked as "unique456"
will have its text color set to blue. The stylesheet code would look like this:

p#unique123 { color:red; font-style:italic; }
p#unique456 { color:blue; font-style:italic; }

Within the HTML document, we mark such paragraphs by inserting the attribute "id" with
value = "unique123" inside the paragraph start tag as shown below:
. . . <!-- previous HTML code -->
<p id="unique123" > Do NOT drop this carton! </p>
. . . <!-- additional HTML code -->
<p id="unique456" > Do NOT drop this carton! </p>
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 5

InheritanceCSS

. . . <!-- additional HTML code -->

 Inheritance
Inheritance is where a nested (child) element inherits the property values of its parent or ancestor,
if these property values aren't declared in the child. For example, suppose we had the following
entries on a style sheet:
body {color:black;}
p {color:red;}
h1{ font-size:1.25em;}
In this case, the body element encloses all of the other elements, and so, unless overridden, all of
the text in the document will be black. Since the p element overrides the color element, the outcome
will be red paragraph text. Also, any tags nested within the p element will inherit this red text, un-
less it overrides the color property. The h1 element, being nested within the body element, will in-
herit the black color.

 Box Model
The CSS Box model describes how element content is laid out, primarily in the visual mode. The
two basic layout patterns within CSS are the Box model and the Inline layout model. In effect, these
are "layout managers" that may be familiar to the reader from the graphics components of languag-
es like Java. CSS assumes that every element generates one or more boxes. These are rectangular
and are called element boxes. This box has a content core that is surrounded by padding, borders,
and margins, all of which can be null, that is, set to a width of zero.
Additional layouts are concerned with "positioned elements" and "floating elements". Consider the
diagram below that shows some detail of the Box model. It is a feature of CSS that the background
color of an element covers all of the area up to the outer edge of the border. This will fill the content
area and the padding. The fundamental equation governing these parts of the "Box" is as follows:
margin-left+ border-left-width + padding-left+width + padding-right + border-right-width + mar-
gin-right += value of width of parent's content area

Content area of a block level element goes here, like a
paragraph or one of the headings

content area

padding

margin

bottom

right

top

left
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 6

InheritanceCSS
 In-Line Model
Setting inline text is slightly more involved and the following quotes are from the CSS2 specifica-
tion that may be found at the W3C.

In an inline formatting context, boxes are laid out horizontally, one after the other,
beginning at the top of a containing block. Horizontal margins, borders, and pad-
ding are respected between these boxes. The boxes may be aligned vertically in
different ways: their bottoms or tops may be aligned, or the baselines of text
within them may be aligned. The rectangular area that contains the boxes that
form a line is called a line box.

The width of a line box is determined by a containing block. The height of a line
box is determined by the rules given in the section on line height calculations. A
line box is always tall enough for all of the boxes it contains. However, it may be
taller than the tallest box it contains (if, for example, boxes are aligned so that
baselines line up). When the height of a box B is less than the height of the line
box containing it, the vertical alignment of B within the line box is determined by
the 'vertical-align' property.

When several inline boxes cannot fit horizontally within a single line box, they are
distributed among two or more vertically-stacked line boxes. Thus, a paragraph is
a vertical stack of line boxes. Line boxes are stacked with no vertical separation
and they never overlap.

In general, the left edge of a line box touches the left edge of its containing block and the right edge
touches the right edge of its containing block. However, floating boxes may come between the con-
taining block edge and the line box edge. Thus, although line boxes in the same inline formatting
context generally have the same width (that of the containing block), they may vary in width if
available horizontal space is reduced due to floats. Line boxes in the same inline formatting context
generally vary in height (e.g., one line might contain a tall image while the others contain only
text).
When the total width of the inline boxes on a line is less than the width of the line box containing
them, their horizontal distribution within the line box is determined by the 'text-align' property. If
that property has the value 'justify', the user agent may stretch the inline boxes as well.
Since an inline box may not exceed the width of a line box, long inline boxes are split into several
boxes and these boxes distributed across several line boxes. When an inline box is split, margins,
borders, and padding have no visual effect where the split occurs. Formatting of margins, borders,
and padding may not be fully defined if the split occurs within a bidirectional embedding.
Inline boxes may also be split into several boxes within the same line box due to bidirectional text
processing.

 Property Values
Once a property is specified, such as a color property, then that requires a value to be associated
with it. On the other hand, a property such as a margin on the left side of the text, that is margin-
left, it can take a numeric such as 0.5in. Below you will see several sections of types of values that
properties can take. It will be convenient to specify several keyword that will represent these cat-
egories of values. The keywords used in this course will be:

• <color keyword >

• <length >
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 7

InheritanceCSS

• <percentages >

• <url>

• <hexadecimal>

 Value Representations
To indicate grouping and options within values the following conventions will be observed:

• A vertical bar (|), is used to separate two or more alternatives. Only one may be used.

• A sequence of words means that they all must occur in the order shown.
1. Square brackets ([]), are used to group values.

• Double vertical bars (||) indicate alternates, but you can select any one (or more) in any order.
To indicate modification of keyword, value types, or groups, the following symbols will be used:

• An asterisk (*) indicates that the preceding entity (that is keyword, value type, or group), can
occur zero or an unlimited number of times.

• A question mark (?) indicates that the preceding entity can occur zero or once, that is, the
entity is optional.
1. A plus sign(+) indicates the preceding entity must occur at least once, with an unlimited

upper bound.

• A pair of integer within curly braces sets minimum and maximum occurrences for the preced-
ing entity. For example margin{0,4} indicates that the word margin can occur from zero up to
a maximum of four times.

 Value Framework

 Color Values
Color values can be used to specify a foreground color, that is, text, or can be used to set the back-
ground color. In addition, borders can have colors specified. A keyword for the color values de-
scribed below is *color*. The particular types of values that may be used to specify colors follow:

• Hexadecimal values - #RRGGBB where RR corresponds to how much "red" is in the color,
GG corresponds to the amount of "green" while BB denotes the "blue" quantity. Each of these
values can range from zero to 255 that is, #00 to #FF in hexadecimal. Pure red would be repre-
sented as - #FF0000, pure green by - #00FF00 and pure blue would be written as - #0000FF.
Gray would be #808080.

• Hexadecimal shorthand. This setting uses only three value, with each value considered dupli-
cated. For example red could be written as - #F00, which is shorthand for #FF0000. Gray
would be - #808080

• rgb(r%, g%, b%) - Using percentages from 0- 100, then red would be written as - rgb(100%,
0%, 0%), while blue would look like - rgb (0%, 0%, 100%). Gray would be rgb(50%, 50%,
50%);
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 8

InheritanceCSS

• rgb(r, g, b) - using integer values between 0- 255 (these correspond to the hexadecimal values

discussed earlier). Now red would be - rgb(255, 0 0), blue would look like- rgb(0,0,255),
whereas white would be - rgb(255, 255, 255). Gray is - rgb (128,128,128). Higher values are
clipped to 255.

• <keyword> - CSS has 16 colors defined by keywords: aqua, black, blue, fuchsia, gray, green
lime, maroon, navy, olive, purple, red, silver, teal, white, yellow.

 Length Values
Absolute and relative lengths are supported, allowing a leading - or + sign. The numeric value is
followed by a unit identifier. These values are referred to by the keyword *length*.

• em (em-height) - *this is the preferred measure on the web. It is a measure that depends on the
current font's character box height. Traditionally, this was equivalent to the width of the capital
letter "M" in the current font. It has evolved from that however, and is used as a more general
length measure, both horizontal and vertical.

• px (pixel) - Computer displays are made up of pixels (picture elements). These are the small
dots that make up the total image you see on the screen. Since each monitor has (usually) a dif-
ferent number of pixels per inch, this is also a problematic measure to use for accurate work.

• in (inch) - not recommended for use on the web
cm (centimeter) - not recommended for use on the web
mm (millimeter) - note recommended for use on the web

• pt (point) - this is the traditional typographers unit of measure. There are 72 points per inch.
Again, these do not map consistently to any web environment and are therefore discouraged
for web work. For printed media they are still useful however.

• pc (pica) - this is again a typographers measure with 1 pica defined as 12 points. The same
warnings apply as above for points. There are 72 points per inch and so 6 picas are an inch.

 Angle Values
• These are used for aural properties, but there are no aural styles currently supported in the

major browsers. The units here can be in radians or degrees.

 Time Values
• These are used for aural properties, but there are no aural styles currently supported in the

major browsers. The units here can be seconds or milliseconds.

 Frequency Values
• These are used for aural properties, but there are no aural styles currently supported in the

major browsers. The units here can be Hertz, (that is cycles per second) or kiloHertz.

 String Values
• This allows an arbitrary sequence of (potentially Unicode) characters to be codified as a quote

delimited string. The quote can be either a single or a double quote.
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 9

InheritanceCSS

 Percentage Values
• These are integers or real numbers optionally preceded by a sign (+ , -). These values are

referred to as the keyword *percentage*.

• URI values (Universal Resource Indicator) are used for unique identifications, or more usually
to refer to a more specific type of URI called a URL (Universal Resource Locator). A common
use is to have the URI value point to the location of a specific file, often a graphic file. For
example, to set a background image we could write:

body {background-image: url(http://www.company.com/images/jpg1.jpg) }.
This example will attempt to fetch a "jpg" image from a location on the web and use that image as
background for the body element. These values will be referred to using the keyword *uri*.

 Pseudo-Classes
The :link, :visited, and :active are called pseudo classes and are used to assign properties
to link states such as unvisited, visited, active and hover. These are all associated with the a anchor
element. For example:
1. a:link {color:purple;}
2. a:visited {color:gray;}
3. a:active {color:red;}
4. a:hover {color:fuchsia;}

 Pseudo-Elements
Pseudo-Elements lets a user agent virtually insert markup into a document, and then apply styles
to that virtual markup. This allows the user agent to style things like "the first line of an element".
Since this virtual markup is treated as an element-like structure, the selector is called a "Pseudo-
element". These elements are as follows:
1. first:letter - this selector is used to apply styles to the first letter of an element. For exam-

ple: E:first-letter {color:red;} would apply a style to the first letter of element "E".
2. first:line - this selector is used to apply styles to the first line of an element. For example:

E:first-line {color:red;} would apply the style to the first displayed line of element
"E".

3. :before - this selector is used to put generated content into the document before the content
of an element. For example:
E:before {content:"Look Ahead!"; color:blue;} would place content before the con-
tent of the element "E".

4. :after - this selector is used put generated content after the content of an element. For exam-
ple:
E:after {content:"Look Behind You!"; color:blue;} would place content after the
content of the element "E".

 @ Rules
The at-rule set of constructs simply distinguish a block of instructions.
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 10

CSS Reference - CSS Mobile Profile 1.0CSS

 @import
This rule is used to import a stylesheet into another stylesheet. For example:

<style type="text/css" > @import url(extra.css) </style >

 @media
This rule is used to specify the target client media for a set of style rules. This allows the developer
to place multiple sets of style rules within a single style sheet. The media available are: print, aural,
braille, handheld, projection, screen, embossed, tty, tv, or all. For example:

@media print {body {margin-left:5cm;} }
@media screen {body {margin-left:2em;} }
@media print,screen {body {color:gray;} }

 @page

This rule is used to define the page context for printed media. For example:

@page {size: 8.5in 11in; margin: 1in; }

 CSS - {HTML, XHTML} Interactions
The linkage between the HTML or XHTML documents and CSS is usually effected by the link el-
ement that is inserted within the head section of an (X)HTML document. The structure of this link
is shown in the following example:
<link href="mystyle.css" rel="stylesheet" type="text/css" >

 CSS Reference - CSS Mobile Profile 1.0
This reference set of CSS properties specifies a profile of the CSS level 2 spec, appropriate for
mobile devices such as wireless phones or low end PDAs. Note that these styling properties
described here can be used by HTML, XHTML, and XML documents alike.

The source of the properties found in the table below come from the CSS Mobile spec.This is a
W3C specification and its authors place this spec in context as follows:

The CSS Mobile Profile specifies a conformance profile for mobile devices, identifying a
minimum set of properties, values, selectors, and cascading rules. The resulting CSS
Mobile Profile is very similar to CSS1.

We will extract from this spec both its selector table and its property table, as shown below.

Legend for the Table
The following symbols and their interpretations are as follows:

Symbol Interpretation

| alternation (or) , one of the values must occur

[[. . .]] choose any one, in any order. Can choose multiple components
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 11

CSS Reference - CSS Mobile Profile 1.0CSS
CSS Reference Table (Selectors and Properties)

CSS Property Table

[. . .] group elements

{ n,m } apply to the preceding at least "n" times and no more that "m" times.

Pattern Meaning Selector Type

* Matches any element Universal selector

E Matches any E element Type selectors

E, F Matches E or F elements Type selectors

E F Matches any F element that is a descendant of
an E element

Descendant selectors

E:link E:visited Matches element E if E is the source anchor of
a hyperlink of which the target is not yet vis-
ited(link) or already visited (visited)

The link pseudo-
classes

E:active Matches E element during certain user actions The dynamic pseudo-
classes

E:focus Matches E during certain user actions The dynamic pseudo-
classes

div.warning Same as div[class = "warning"] Class selectors

E#myid Matches any E element ID equal to "myid" ID selectors

 Property Name CSS Values Initial value(s)

'background'
note: this is a short-
hand notation for the
alternatives listed

['background-color' || 'background-image'
||'background-repeat' ||background-attachment'
|| 'background-position'] | inherit

body{background:
blue url(snow.gif)
top center scroll

'background-attach-
ment'
tiling context and
scroll state of a back-
ground element

scroll | fixed | inherit h2 { background-
attachment: scroll}
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 12

CSS Reference - CSS Mobile Profile 1.0CSS
'background-color'
set color of back-
ground, including
padding

<color> | transparent |inherit p.danger {back-
ground-color: red;}

'background-image'
this is a reference to
an image to be placed
in background of an
element

<uri> |none | inherit table { background-
image: url(snow.png)
}

'background-position'
origin of a repeated
image

[[<percentage> | <length>]{1,2} | [top | cen-
ter | bottom]|| [left | center | right]] |inherit

0% 0% body {back-
ground-position: top
left; }

'background-repeat'
defines directions of
repeated background
image

repeat|repeat-x|repeat-y|no-repeat | inherit repeat

'border'
note: this is a short-
hand notation for the
alternatives listed

['border-width' || 'border-style' || color]|inherit h3 { border:
0.15em inset
blue; background-
color:transpar-

ent;}
See individual prop-
erties

'border-color'
set the color of 1 to
four border segments ,
that is, top right bot-
tom or left border

<color>{1,4} |transparent|inherit See individual prop-
erties

'border-style'
set the style of 1 to
four border segments ,
that is, top right bot-
tom or left border

<border-style> {1,4}|inherit See individual prop-
erties

'border-top' 'border-
right' 'border-bottom'
'border-left'

['border-top-width'||'border-style'|| <color>
]|inherit

See individual prop-
erties
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 13

CSS Reference - CSS Mobile Profile 1.0CSS
'border-top-color'
'border-right-color'
'border-bottom-color'
'border-left-color'
set the colors of bor-
der segments

<color> |inherit The value of the
'color' property

'border-top-style' 'bor-
der-right-style' 'bor-
der-bottom-style'
'border-left-style'
set the styles of border
segments

<border-style> |inherit none

'border-top-width'
'border-right-width'
'border-bottom-width'
'border-left-width'
set the widths of bor-
der segments

<border-width> |inherit medium

'border-width'
short hand for setting
border segment
widths

<border-width>{1,4}|inherit See individual prop-
erties

'clear'
keep an element from
being displayed next
to floated elements

none|left|right|both|inherit none

'color'
set the foreground
color of an element (
usually this is the text
color)

<color>|inherit user agent dependent
h1 { color:#f00;
background:trans-
parent;}
h3{color:green;
background:trans-
parent;}
p {
color:#ff3300;
background:trans-
parent;}
em {color:
rgb(255, 0,0);
background:trans-
parent; }
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 14

CSS Reference - CSS Mobile Profile 1.0CSS
'display'
set the basic category
of an element thus
determining its dis-
play properties

inline|block|list-item|none **other values for
CSS1, CSS2

inline
p { dis-
play:block; pad-
ding: 0.5em;
border:0.1em;}

'float'
make an element
move to one side of
the parent element's
content area. This lets
content flow around
it.

left|right|none|inherit none

'font'
this determines the
text presentation set
of characters

[['font-style'||'font-variant'||'font-weight']?
'font-size'[line-height']? 'font-family']|caption
|icon|menu|message-box|small-caption|status-
bar|inherit

p { font: bold
1.15em/120%
Arial,sans-

serif;} See indi-
vidual properties

'font-family'
this is the family of
fonts to be selected
from

[[<family-name> | <generic-family>]* [
<family-name>|<generic-family>]|inherit

user agent dependent
p { font-family:
Arial, sans-
serif;}

'font-size'
this is the size of the
characters in the cho-
sen font

<absolute-size>|<relative-size>
<length>|<percentage>|inherit

medium

'font-style'
this is a variation
within the font *

normal|oblique|italic|inherit normal
p { font-
style:italic;
font-family:
Arial, sans-
serif;}

'font-variant'
this is a variation
within the font

normal|small-caps|inherit normal
p { font-vari-
ant:small-caps;
font-size:1.3em;
font-
style:italic;
font-family:
Arial, sans-
serif;}
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 15

CSS Reference - CSS Mobile Profile 1.0CSS
'font-weight'
this sets the type den-
sity or 'blackness'

normal|bold|bolder|lighter
100|200|300|400|500|600|700|800|900|inherit

none
h3 {font-family:
Helvetica, sans-
serif; font-
weight:800;}

'height'
this sets the height of
an element's content
area

<length>| <percentage> |auto|inherit auto
img.view1 { height:
20em; }

'list-style'
set the type of list
style desired

['list-style-type'||'list-style-position'||'list-style-
image']|inherit

See individual prop-
erties

'list-style-image'
this refers to an image
to be used as the
marker for a list

uri | none | inherit none

'list-style-position'
this places the marker
relative to the list con-
tent

inside|outside|inherit outside

'list-style-type'
this sets the ordinal or
numeric style of the
marker

disc|circle|square|decimal|lower-roman|upper-
roman| lower-alpha|upper-alpha|none|inherit

disc

'margin'
this sets the spacing
around an element
(see also padding and
border width)

<margin-width>{1,4}|inherit See individual prop-
erties
body {margin: 2em
1em 3em 4em; }

'margin-top' 'margin-
right' 'margin-bottom'
'margin-left'
this sets the margin
for that segment of the
element
that is, margin above,
right, bottom, left

<margin-width>|inherit none
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 16

CSS Reference - CSS Mobile Profile 1.0CSS
'padding'
this sets immediate
space around the ele-
ment

<padding-width>{1,4}|inherit none

'padding-top' 'pad-
ding-right' 'padding-
bottom' 'padding-left'
this sets the padding
for that segment of the
element
that is, padding above,
right, bottom, left

<padding-width>|inherit none

'text-align' left|right|center|justify|<string>|inherit user agent dependant
h3 {text-align:
center;}
p { text-align:
justify; }

'text-decoration' none| [underline||overline||line-
through||blink]|inherit

none
h3 {text-decora-
tion: underline;
color:blue; back-
ground:transpar-
ent;}
a { text-decora-
tion: underline;
color:purple; }

'text-indent'
indent the first line of
text (of a block ele-
ment)

<length>| <percentage>|inherit 0

'text-transform'
capitalization instruc-
tions

capitalize|uppercase|lowercase|none|inherit none

'vertical-align'
set the vertical align-
ment of text within a
line or table cell

baseline|sub|super|inherit baseline
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 17

Additional Features of the CSS LanguageCSS
 Additional Features of the CSS Language

 Linking and Styling Approaches
Here are the ways you can invoke the properties specified in Table I, shown later in this document.

 The Style Element
This STYLE element is contained within the HEAD element and is used to embed styles within
the HTML page itself. For example (this is nested within the HEAD element) :

< style type= "text/css" >
h1 { color:red; margin-top:2em; }
</style >

 Link Element
The LINK element is nested within the HEAD element and is used to reference an external style
sheet to be used with this web page. For example, here is a call out to use the style sheet denoted
by the href attribute.
< link rel= "stylesheet" href="basiccssproperties.css" type="text/css" />

 &import At-Rule
This rule is nested within the STYLE element and must appear before any other style rules. It is
used to import a style sheet into another style sheet. Note that the styles in the imported sheet will
be overridden by style appearing within the rest of the STYLE element. So, for the example below,
if the "anothersheet.css" had an style such as h1 {color:green; } it would be replaced by the red
color specified in the body of the STYLE element.
< style type= "text/css" >
&import url("anothersheet.css");
h1 { color:red; margin-top:2em; }
</style >

'white-space'
this determines how
browser handles white
space in the source
document

normal|pre|nowrap|inherit normal

'width'
this sets the width of
an element's content
area

<length>| <percentage>|auto|inherit none
h3 {width: 15em;
height:7em; bor-
der: 0.5em inset
green; pad-
ding:2em 1em 2em;
}
C:\acbooks\QPack2008\CSS.fm 9/28/08 r.r 18

	Cascading StyleSheets
	Introduction to Cascading Style Sheets (CSS)
	Example CSS-1

	Keeping Content and Presentation Separate with CSS
	Origins and Evolution
	Inheritance
	Box Model
	In-Line Model
	Property Values
	Value Representations
	1. Square brackets ([]), are used to group values.
	1. A plus sign(+) indicates the preceding entity must occur at least once, with an unlimited upper bound.

	Value Framework
	Color Values
	Length Values
	Angle Values
	Time Values
	Frequency Values
	String Values
	Percentage Values

	Pseudo-Classes
	1. a:link {color:purple;}
	2. a:visited {color:gray;}
	3. a:active {color:red;}
	4. a:hover {color:fuchsia;}

	Pseudo-Elements
	1. first:letter - this selector is used to apply styles to the first letter of an element. For example: E:first-letter {color:red;} would apply a style to the first letter of element "E".
	2. first:line - this selector is used to apply styles to the first line of an element. For example: E:first-line {color:red;} would apply the style to the first displayed line of element "E".
	3. :before - this selector is used to put generated content into the document before the content of an element. For example: E:before {content:"Look Ahead!"; color:blue;} would place content before the content of the element "E".
	4. :after - this selector is used put generated content after the content of an element. For example: E:after {content:"Look Behind You!"; color:blue;} would place content after the content of the element "E".

	@ Rules
	@import
	@media
	@page

	CSS - {HTML, XHTML} Interactions

	CSS Reference - CSS Mobile Profile 1.0
	Additional Features of the CSS Language
	Linking and Styling Approaches
	The Style Element
	Link Element
	&import At-Rule

